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1. Introduction 

In 2003, Wang et al.1 derived expressions for the Differential Group Delay (DGD) of a randomly 

birefringent fiber in the Fixed Modulus Model (FMM). The DGD has both modulus and phase. 

The FMM assumes that the modulus of the birefringence vector is a random variable. Wang et al. 

presented analytical results with the following assumptions: 

• The spin function is periodic. 

• The periodicity length (p) of the fiber is much smaller that the fiber correlation length (LF) 

or p<< LF.  

Later they also generalized the FMM and presented the Random Modulus Model (RMM), which 

also includes the randomness in the direction of the birefringence vector. Now the RMM 

equations could only be solved numerically.   

In the present work, the full implications of the FMM have been explored under the following 

conditions:  

• The p<< LF approximation has been relaxed. 

• A nonzero twist has been included. 

• A constant spin rate has been added. 

We give the analytical solutions of the exact FMM equations and present some numerical results 

showing the effect of different physical conditions.  

2. Theoretical Analysis 

2.1 The Model With Periodic Spin Function 

The starting point is the well-known vector equation describing the change in the Jones local 

electric field vector A


 (, z) with the angular frequency   and distance z along a twisted fiber. 
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1 Wang, M.; Li, T.; Jian, S. Analytical Theory for Polarization Mode Dispersion of Spun and Twisted Fiber. Optics Express 

2003, 11 (19), 2403–2410. 
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Here   () is the birefringence and  

 )sin()( 0 zz 



  (2) 

is the periodic spin profile function with spin magnitude 0  and angular frequency of spatial 

modulation  .   

The boundary conditions are  

 0/)0(,1)0( 11  dzdAA  (3a) 

 )2/(/)0(,0)0( 22  idzdAA  (3b)  

Let zs  be a dimensionless variable. We use )/()/( dsddzd   to rewrite equation 1. 
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The subscripts denote differentiation ( dsdAAdsdAA ssss /,/ 2211  ). Also, ( / 2 )a β η   and 

)/( 0 c  are dimensionless constants.   

We express all parameters in terms of the lengths given as beat length (   /2BL ), spin 

period (  /2 ), and coupling length ( 00 /2 l ). Then we can write 0/,2/ lLcLa BB  . 

The new boundary conditions are 

 0)0(,1)0( 11  sAA  (5a) 

 iaAA s  )0(,0)0( 22  (5b) 

These equations (equation 1 or, equivalently, equation 4) do not have analytical solutions.  

In the perturbative approximation (see appendix), an analytical result has been derived  

earlier.
1
 In the present work, we derive analytic solutions by approximating the sine function by 

linear segments and compare them to the perturbative solutions for the same segments.  

2.2 Linear Segment Approximation to the Periodic Spin Function: Analytical Solutions 

for the Jones Amplitude Equations  

2.2.1 The Model 

The periods of the straight line segments shown in figure 1 approximate the periodic sine 

function. A single period with three-segment approximation is shown.
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Figure 1. The three-segment approximation to 

the periodic sine function. 

The field amplitudes for a given segment satisfy the following equations. 
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The superscript and subscript m both indicate the segments for which the coupled equations hold. 

The limits of segments follow. 

We require that the endpoints of )(sm should be the same as that of the sine function spin profile 

scs spin sin|)(   for all segments. Define  /2~ cc   so that the end-point conditions for 

segments hold.  
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For n =3, Segment III: 3 / 2 s 2    , 
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2.2.2 The General M-Segment Solutions 

The solutions for the mth segment have the following general form: 
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 (7) 

with 

 dssdsaq msmmm /)(),( /

222
    

The exact solutions for the coupled equations in one segment are related to those in the previous 

adjacent segment by the following chain-relations among the coefficients.   

Define ,/)(),/( /1/1 msmsmmm qvqqu    and then the chain-relations are given by 
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  (8) 

Here, the matrix elements are  

 .sinsin,cossin

,sincos,coscos

11141113

11121111









mmmmmmmm

mmmmmmmm

sqsqtsqsqt

sqsqtsqsqt

 

The matrix chain-relations can be written compactly by expressing the 4 × 4 matrices as outer 

products (denoted by the symbol  ) of two 2   2 matrices as
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2.2.3 The Specific 3-Segment Solutions 

The details about solutions for 3-segments follow. 

• Segment I: 2/0  s  

The equations are 
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The boundary conditions are 

     0)0(,1)0(
)1(

1

)1(

1  sAsA s  (11a) 

     iasAsA s  )0(,0)0(
)1(

2

)1(

2  (11b) 

Let 
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then the analytical solutions are similar to those given in section 2.2   
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Comparison with general expression gives the following coefficients: 

 nbaba 
)1(
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1 ,0,0,1   (14) 

For calculating Polarization Mode Dispersion (PMD) Correction Factor (PCF), the amplitudes 

have to be differentiated with respect to ω, which will be denoted by subscript ω. Some useful 

relations needed for this are  
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Then we can write 
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where 

 0)1(

1 p , nqsp )1(
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4  (17a) 
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Some interesting relations are found as 

 222

0

2 1)/2(,)2/(,1)/4( nnqsznq    (18) 

• Segment II: 2/32/   s  

The equations are 
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The boundary conditions are 

    )2/()2/(
)2(

1

)1(

1   sAsA   (20a) 

    )2/()2/(
)2(

1

)1(

1   sAsA ss  (20b) 

Similar expressions exist for )(
)2(

2 sA . Using the chain-relations with n = 2, the analytical 

solutions are obtained.
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The ω -differentiated amplitudes are found as 
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where 

 qqsqqqnp  sinsin)cos1(22)2(

1   (23a) 

 qqsqqqnp  coscossin)2(

2   (23b) 

qsqnnqqqnp )cos1()cossin2( 222)2(

3    (23c) 

 qqsqqqnp  sin)sin(cos)2(

4   (23d)
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8 np   (23h) 

 

• Segment III:  22/3  s  

The equations are 
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The boundary conditions are 
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Similar expressions exist for (3)

2 ( ).A s Using the chain-relations with n = 3, the analytical 

solutions are obtained.  
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The ω -differentiated amplitudes are found as 
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where 
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2.3 Calculation of PCF   

The sum of squares of the ω-differentiated amplitudes is similar to power and can be calculated 

by the following expression: 
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Here, m (=1, 2, 3) refers to segments in sequential manner.  

For calculating the normalized PCF, we need a similar expression for unspun fiber: 
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Then the expression for the PCF becomes 
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The left-hand side of equation 31 is a function of parameters n  and q  and argument s . In 

general, the expressions are quite complicated, but for the first segment the PCF is easily 

calculated and is given by 
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3. Numerical Results 

The physical constants (  , 0 , ), or equivalently ( BL , 0l , ), and the parameters ( qn, ) 

appearing in the PCF expressions are related by 
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We show results for sets of parameters in two limits to emphasize the difference between the 

exact and perturbative calculations. 

3.1 The Small-Q Limit (< BL ) 

As shown in table 1 and figures 2 and 3, in this limit, two sets of parameters were chosen to get 

small q-values (less than 1). This corresponds to beat length being larger than spin period.  

Table 1.  PCF vs. z plots with small-q-limit parameters. 

Parameters:  , BL , 0l   

(m) 

Values  

( qn, ) Comments 

(1,12,1) (0.9978, 0.6379) << BL  

(1,5,1) (0.9879, 0.6444) < BL  
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Figure 2. The PCF curve for a perturbative limit with  = 1 and BL = 12. The curves for exact 

and perturbative calculations are almost identical.  

 
Figure 3. The PCF curve for a perturbative limit with  = 1 and BL  = 5. The curves for exact 

and perturbative calculations are almost identical. Note that after s = 5, the two start 

diverging a little. 
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3.2 The Large-Q Limit (> BL ) 

As shown in table 2 and figures 4 and 5, in this limit, two sets of parameters were chosen to get 

large q-values (much larger than 1). This corresponds to beat length being smaller than spin 

period.  

Table 2. PCF vs. z plots with large-q-limit parameters. 

Parameters:  , BL , 0l   

(m) 

Values  

( qn, ) Comments 

(5,1,1) (0.7864, 4.0475)  > BL    (physical nonperturbative limit) 

(12, 1, 1) (0.7864, 9.7139)  >> BL  (physical very nonperturbative limit) 

 

 
Figure 4. The PCF curve for a nonperturbative limit with  = 5  and BL =1. The top and bottom 

curves show exact and perturbative calculations, respectively. Note that perturbative 

approximation underestimates the PCF in this regime. 
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Figure 5. The PCF curve for a nonperturbative limit with  = 12 and BL =1. The top and bottom 

curves show exact and perturbative calculations, respectively. It is seen that perturbative 

approximation underestimates the PCF in this regime. 

4. Conclusions 

It was shown through these calculations that the perturbative approximation made in Galtarossa 

et al.2 has limited validity compared with an exact calculation. The three-segment approximation 

given here can be extended to any number of segments. At the next level, the segment 

expressions can be derived for any given profile of the spin function. The exact analytic 

expressions allow a physical understanding of the limits of the approximations employed earlier.

                                                 
2 Galtarossa, A.; Palmieri, L.; Pizzinat, A. Optimized Spinning Design for Low PMD Fibers: An Analytical Approach.  

J. Lightwave Technol. 2001, 19 (10), 1502–1512. 
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Appendix. Perturbative Calculation for Segments



 

14 

The perturbative approach is based on the following assumptions: 

• The coupling between the polarization states is so small that the equations become 

decoupled.  

• The top component is constant ( 3,2,1,1
)(

1  mA
m ), and only the second component 

changes. 

• The boundary conditions remain unchanged.   

Under these assumptions, the dimensionless constant q  becomes c~ , which is related to the 

physical lengths as   
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The new equations and their solutions take the following form:  

• Segment I: 
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The sum of squares of the ω-differentiated amplitudes: 
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• Segment II: 
2

3

2


 s   

Perturbative equations: 
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Solutions: 
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The sum of squares of the ω-differentiated amplitudes: 
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Expression for PCF is obtained as before. 

• Segment III: 
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Perturbative equations: 
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Solutions:  
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The sum of squares of the ω-differentiated amplitudes: 

  
  






































 

scccc

scccc

c

c

a
sAsA

pert ~2sin6sin28sin10sin2

~2cos6cos28cos10cos2

)4cos45(

~2

1
)()(

2
2

)3(

2

2
)3(

1



 (A11) 

The PCF can be calculated as before.  
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